
Technological University (Kalay) ETSJ, 2020. Volume-02, Issue-02

261

RECTANGULAR ELEMENTS SOLUTION FOR POISSON’S

EQUATION
Myat Moe Khaing, Ni Ni Win

Abstract— In this paper, firstly introduced the finite element method especially for Poisson's

equations are thoroughly discussed with boundary conditions. It is the purpose herein to present

brief derivations of the finite element approximation describing a discrete model and computer

program using C++ have been written rectangular elements solution is calculated for Poisson’s

equation.

Key Words: Rectangular Elements Method, Partial Differential Equation, Variational Principle,

C++ program

—————————— ——————————

1 INTRODUCTION (1)

et us consider the field problem L = f in R,

with B = g on C, the bounding R, L and B

are differential operators. The finite element

method seeks on approximations,

(x, y), to the exact solution, (x, y) in a

piecewise manner, the approximations being sought

in each of total E elements. This in the general ele-

ment an approximation (x, y) is sought in such a

manner that outside e, (x, y) = 0, e = 1, 2,…, E

and it follow that the approximate solution may be

written as where the sum-

mation is taken over all the elements

2 RECTANGULAR ELEMENT

DISCRETIZATION

A simplest rectangular element is one with just four

nodes, one at each corner. Choose local coordinates

(,) as shown is fig1. Since there are four nodes

with one degree of freedom at each node, the dis-

placement variation throughout the element is of the

following bilinear form,

Fig. 1. The four-node rectangle(xm,ym) are the coordinates

of the mid-point of the rectangle.

Using the Lagrangian interpolation polynomials, the

shape functions are obtained as follows:

Similarly

Then

(2)

 (

Now and Thus

L

————————————————

 Myat Moe Khaing is currently working as a Lecturer at

Faculty of Computing Department in Myanmar Institute of

Information Technology, Myanmar, PH-09422481777

.E-mail: myat_moe_khaing@miit.edu.mm

 Ni Ni Win is currently working as a Professor at Faculty of

Computing Department in Myanmar Institute of Information

Technology, Myanmar, PH-09797486626

.E-mail: ni_ni_win@miit.edu.mm

Technological University (Kalay) ETSJ, 2020. Volume-02, Issue-02

262

For the special case k=1,

(3)

where is the aspect ratio of the element

and

(4)

If the element is boundary element and a non-

homogeneous mixed boundary condition holds

there, then additions are needed to the stiffness and

force matrices “(1)”. On each side the arc length s is

such that

 (5)

(6)

There results will now be used to obtain one-

element solution of the boundary-value problem. It

is possible to set up the element matrices using ele-

ment solution using a single rectangular element.

3 RECTANGUALR ELEMENTS FOR

POISSON’S EQUATION

Let us consider the problem –
2ϕ = 2(x+y)-4 in the

square whose vertices are at (0,0), (1,0) , (1,1) ,

(0,1) . The boundary condition are (0,y) = y
2
,

(1,y) = 1-y, (x,0) = x
2
 , (x,1) = 1-x.

Suppose that the square is divided into four square

elements as shown in fig.2.

Fig. 2. Four element discretization

Using equations (3) and (4), the element stiffness

matrices and force vectors are

and the overall stiffness matrix K = k
1
 +k

2
+k

3
+k

4
.

Now node 5 is the only where a Dirichlet boundary

condition does not act; thus only the contributions to

the equation corresponding to node 5 need by as-

sembled. Row five of K is

Also

where subscripts refer to the local node numbering

given in Fig.1. and

Technological University (Kalay) ETSJ, 2020. Volume-02, Issue-02

263

thus

since

it follows that the equation for which gives

 The solution at (,) , (,) and (,) is found by

linear interpolation between nodes 1 and 4, 2 and 5 ,

4 and 6 respectively. The results are compared with

the corresponding results using rectangular elements

as shown in Table 1.

Table 1. Comparison of Solutions

(x, y)
(1/4

, 1/4)

(1/4

, 1/4)

(1/4 ,

1/4)

(1/4 ,

1/4)

Four

rectan-

gular

elements

0.241
0.35

6
0.527 0.339

Exact

Solutions 0.094 0.25 0.25 0.281

4 C++ PROGRAM OF RECTANGULAR

ELEMENTS SOLUTION FOR POISSION’S

EQUATION

The C++ program for solving Poisson’s equation,

using four rectangular elements are described.

#include<iostream.h>

#include<iomanip.h>

#define ENODE 4

#define maxN 9

ostream &print1x4(float x[ENODE]);

ostream &print4x1(float x[ENODE]);

ostream &print4x4(float x[ENODE][ENODE]);

void MVM (float M[maxN][maxN], float

V[maxN], int K, int L,float Y[maxN]);

void MIV(float M[maxN][maxN], int n);

void OutText(float M[maxN][maxN], float

V[maxN], int r);

float Inter4(float s, float t, float f1, float f2, float

f3, float f4);

void RectK(float K[ENODE][ENODE], float

f[ENODE], float x[ENODE], float y[ENODE])

{

 float a,r,b,rpr,rmr,rm2r,xm,ym;

 float z[4][ENODE]= {{1,1,1,1},{-1,1,1,-1}, {-

1,-1,1,1},{1,-1,1,-1}};

 int i,j,k;

 a=x[1]-x[0];

 b=y[2]-y[1];

 xm=(x[0]+x[1]+x[2]+x[3])/4;

 ym=(y[0]+y[1]+y[2]+y[3])/4;

 r=a/b;

 rpr=r+1/r;

 rmr=r-2/r;

 rm2r=1/r-2*r;

 a=1/(6*a*b);

 K[0][0]=K[1][1]=K[2][2]=K[3][3]=2*rpr*

a;

 K[0][1]=K[1][0]=K[2][3]=K[3][2]=rmr*a;

 K[0][3]=K[1][2]=K[2][1]=K[3][0]=rm2r*a

;

 K[0][2]=K[1][3]=K[3][1]=K[2][0]=-rpr*a;

 for(i=0;i<ENODE;i++){

 f[i]=1/8.0 * (xm*ym-2) * z[0][i] +

 ym/96.0 * z[1][i] +

 xm/96.0 * z[2][i] +

 1/1152.0 * z[3][i];}}

int main(){

float x[maxN]={0,0,0,0.5,0.5,0.5,1.0,1.0,1.0}

,xx[ENODE],

y[maxN]={0,0.5,1,0,0.5,1,0,0.5,1},yy[ENODE],f[E

NODE],

Technological University (Kalay) ETSJ, 2020. Volume-02, Issue-02

264

u[maxN][2]={{0,0},{0,0.25}, {0,1.0}, {0,0.25},

{1,0}, {0,0.5},

{0,1},{0,0.5},{0,0}},K[ENODE][ENODE],

Ks[maxN][maxN],Fs[maxN],PFs[maxN],Un[maxN

];

int elem[4][ENODE]=

{{0,3,4,1},{3,6,7,4},{1,4,5,2},{4,7,8,5}};

int n=maxN,en=4;int i,j,k; //clear Assemblage Ma-

trices

 for(i=0;i<n;i++){for(j=0;j<n;j++)

 Ks[i][j]=Fs[j]=0;for(i=0;i<en;i++)

{ for(j=0;j<ENODE;j++)

{ xx[j]=x[elem[i][j]];

yy[j]=y[elem[i][j]];}

 RectK(K,f,xx,yy);

 print1x4(f)<<endl;

 print4x4(K)<<endl;

 for(j=0;j<ENODE;j++)

{ for(k=0;k<ENODE;k++)

 Ks[elem[i][j]][elem[i][k]]+=K[j][k];

 Fs[elem[i][j]]+=f[j];} }

cout<<"Assembled equations (Before Boundary

Condition)" << endl;

OutText(Ks,Fs,n); for(i=0;i<n;i++){

 if(u[i][0]==0){for(j=0;j<n;j++)

 Ks[i][j]=0;

 Ks[i][i]=1;

 Fs[i]=u[i][1];}

 PFs[i]=Fs[i];}

 cout<<"Assembled equations "<<endl;

 OutText(Ks,Fs,n);

 MIV(Ks,n);

 MVM(Ks,Fs,n,n,Un);

 for(i=0;i<n;i++){cout<<Un[i]<< " ";}

 Un[4]-=Fs[4];

 cout<< endl;

 cout<< "(.25,.25,.5,.5,.25,.75,.75,.75)" <<

endl;

cout<<setw(9)<<(Inter4(0,0,Un[0],Un[3],Un[4],Un[

1]))

<<setw(9)<<Un[4]<<setw(9)<<(Inter4(0,0,Un[1],

Un[4],Un[5],Un[2]))<<setw(9)<<(Inter4(0,0,Un[4],

Un[7],Un[8],Un[5]))<<endl;

 return 1;}}

ostream &print1x4(float x[ENODE]){int i;

 cout<<setprecision(3);

for(i=0;i<ENODE;i++)cout<<setw(8)<<x[i]<<" ";

 return cout;}

ostream &print4x1(float x[ENODE]){int i;

cout<<setprecision(3);for(i=0;i<ENODE;i++)

 cout<<setw(8)<<x[i]<<endl;

 return cout;}

ostream &print4x4(float x[ENODE][ENODE]){

int i;for(i=0;i<ENODE;i++)print1x4(x[i])<<endl;

 return cout;}

void OutText(float M[maxN][maxN], float

V[maxN], int r)

{ int i,j;

 cout<<setiosflags(ios::fixed);

 cout<<setprecision(4);

 cout<<endl;

 for(i=0;i<r;i++){for(j=0;j<r;j++)

cout<<setw(8)<<M[i][j]<<" ";

cout<<" | "<<setw(8) << V[i] << " <== f"

<<i<<endl;}}

float Inter4(float s, float t, float f1, float f2, float f3,

float f4)

{ float f;

f=(1-s)*(1-t)*f1+ (1+s)*(1-t)*f2+(1+s)*(1+t)*f3+

 (1-s)*(1+t)*f4;return f/4;}

void MVM(float M[maxN][maxN], float V[maxN],

int K, int L ,float Y[maxN])

{

 float X; int i,j;

 for(i=0;i<K;i++){X=0.0;

 for(j=0;j<L;j++)

 X +=M[i][j] * V[j];

 Y[i]=X;}}

Technological University (Kalay) ETSJ, 2020. Volume-02, Issue-02

265

void MIV(float M[maxN][maxN], int n)

{

#define FORJN for(j=0;j<n;j++)

#define FORKN for(k=0;k<n;k++)

#define FORIN for(i=0;i<n;i++)

#define M(i,j) M[(i)][(j)]int i,j,k; float KII;

FORKN{KII=M(k,k);M(k,k)=1;

FORJN

 M(k,j)/=KII;

 FORIN{if(i!=k){KII=M(i,k);M(i,k)=0;

FORJN

M(i,j)-=-M(k,j)*KII;}}}}

Assembled equations (Before boundary Conditions)

are

Out put of the Assembled equations are

5 CONCLUSION

In the above mentioned results, rectangular ele-

ments solution and C++ program solution are the

same for field problems. Finite element approxima-

tion for field problems improvements are made by

refining the finite element mesh. Higher-order ele-

ment may be introduced to get a better polynomial

approximation but integrands involved would be

necessary to use numerical integration. Using this

program, we can easy to know the solution of the

other points of this problem.

It is reasonable to expect that the proposed finite

elements model is a very good approximation of the

continuum. This method is now very widely used,

and forms the basis of most calculations.

ACKNOWLEDGMENT

I would like to take this opportunity to express great

appreciation to Rector, Kalay Technological Univer-

sity for giving me the chance to take part in this

journal. I would like to include my acknowledge-

ments by expressing great appreciation for Professor

Dr. Ni Ni Win, Head of Faculty of Computing, My-

anmar Institute of Information Technology, Manda-

lay. Finally, I would like to acknowledgement my

thanks to minister, teacher, colleagues and friends.

REFERENCES

[1] Davies. Alan, J. (1980) “The Finite Element

method, A First Approach”. Oxford University

Press, New York.

[2] Gurtin, M.E. (1964) “Variational Principles for

Linear Initial Value Problems”.

[3] Hall, C.A and Heinrich, J. (1978) “A finite ele-

ment that satisfies not Ural boundary conditions

exactly”. J. Inst Math's Apples 21,237-50.

[4] Mrrchell, A.R and Warr.R (1977) “The Finite

Element Method in Partial Differential Equa-

tions” Wiley.

[5] Smith G.D. (1978) “Numerical solution of par-

tial differential equations: finite difference

methods”. Oxford University Press.

