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RECTANGULAR   ELEMENTS SOLUTION FOR POISSON’S 

EQUATION  
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Abstract— In this paper, firstly introduced the finite element method especially for Poisson's 

equations are thoroughly discussed with boundary conditions. It is the purpose herein to present 

brief derivations of the finite element approximation describing a discrete model and computer 

program using C++ have been written rectangular elements solution is calculated for Poisson’s 

equation. 
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1 INTRODUCTION                                                          (1)

et us consider the field problem L  = f in R, 

with B  = g on C, the bounding R, L and B 

are differential operators. The finite element 

method seeks on approximations,  

(x, y), to the exact solution,  (x, y) in a 

piecewise manner, the approximations being sought 

in each of total E elements. This in the general ele-

ment an approximation  (x, y) is sought in such a 

manner that outside e, (x, y) = 0,   e = 1, 2,…, E 

and it follow that the approximate solution may be 

written as where the sum-

mation is taken over all the elements 

2 RECTANGULAR ELEMENT 

DISCRETIZATION 

A simplest rectangular element is one with just four 

nodes, one at each corner. Choose local coordinates 

( , ) as shown is fig1. Since there are four nodes 

with one degree of freedom at each node, the dis-

placement variation throughout the element is of the 

following bilinear form,  

                                           

 

Fig. 1. The four-node rectangle(xm,ym) are the coordinates 

of the mid-point of the rectangle. 

Using the Lagrangian interpolation polynomials, the 

shape functions are obtained as follows: 

 

Similarly 

 

 

 

Then    

  

 

(2)

 (

Now        and     Thus 
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For the special case  k=1, 

                        

(3) 

where     is the aspect ratio of the element 

and  

                             

(4) 

If the element is boundary element and a non-

homogeneous mixed boundary condition holds 

there, then additions are needed to the stiffness and 

force matrices “(1)”. On each side the arc length s is 

such that 

  

         (5)                                                                                      

              

(6) 

There results will now be used to obtain one-

element solution of the boundary-value problem. It 

is possible to set up the element matrices using ele-

ment solution using a single rectangular element. 

3 RECTANGUALR ELEMENTS FOR 

POISSON’S EQUATION 

Let us consider the problem –
2ϕ = 2(x+y)-4 in the 

square whose vertices are at (0,0), (1,0) , (1,1) , 

(0,1) . The boundary condition are  (0,y ) = y
2
,  

(1,y ) = 1-y,   (x,0 ) = x
2
 ,  (x,1 ) = 1-x. 

Suppose that the square is divided into four square 

elements as shown in fig.2.  

 

Fig. 2. Four element discretization  

Using equations (3) and (4), the element stiffness 

matrices and force vectors are 

 

 

 

 

 

   

 

and the overall stiffness matrix K = k
1
 +k

2
+k

3
+k

4
. 

 

  

Now node 5 is the only where a Dirichlet boundary 

condition does not act; thus only the contributions to 

the equation corresponding to node 5 need by as-

sembled. Row five of K is  

 

     
Also   

where subscripts refer to the local node numbering 

given in Fig.1. and 
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thus           

since  

 

 

it follows that the equation for  which gives  

 

 The solution at (  , ) , (  , ) and (  , ) is found by 

linear interpolation between nodes 1 and 4, 2 and 5 , 

4 and 6 respectively. The results are compared with 

the corresponding results using rectangular elements 

as shown in Table 1. 

Table 1. Comparison of Solutions 

(x, y) 
(1/4 

, 1/4) 

(1/4 

, 1/4) 

(1/4 , 

1/4) 

(1/4 , 

1/4) 

Four 

rectan-

gular 

elements 

0.241 
0.35

6 
0.527 0.339 

Exact 

Solutions 0.094 0.25 0.25 0.281 

 

4 C++ PROGRAM OF RECTANGULAR 

ELEMENTS SOLUTION FOR POISSION’S 

EQUATION 

The C++ program for solving Poisson’s equation, 

using four rectangular elements are described. 

#include<iostream.h> 

#include<iomanip.h> 

#define ENODE 4 

#define maxN 9 

ostream &print1x4(float x[ENODE]); 

ostream &print4x1(float x[ENODE]); 

ostream &print4x4(float x[ENODE][ENODE]); 

void MVM  (float M[maxN][maxN], float 

V[maxN], int K,         int L,float Y[maxN]); 

void MIV(float M[maxN][maxN], int n); 

void OutText(float M[maxN][maxN], float 

V[maxN], int r); 

float Inter4(float s, float t, float f1, float f2, float 

f3, float f4); 

void RectK(float K[ENODE][ENODE], float 

f[ENODE],    float x[ENODE], float y[ENODE]) 

{ 

    float a,r,b,rpr,rmr,rm2r,xm,ym; 

    float z[4][ENODE]= {{1,1,1,1},{-1,1,1,-1}, {-

1,-1,1,1},{1,-1,1,-1}}; 

    int i,j,k; 

    a=x[1]-x[0]; 

    b=y[2]-y[1]; 

    xm=(x[0]+x[1]+x[2]+x[3])/4; 

    ym=(y[0]+y[1]+y[2]+y[3])/4; 

    r=a/b; 

    rpr=r+1/r; 

    rmr=r-2/r; 

    rm2r=1/r-2*r; 

    a=1/(6*a*b); 

 K[0][0]=K[1][1]=K[2][2]=K[3][3]=2*rpr*

a; 

 K[0][1]=K[1][0]=K[2][3]=K[3][2]=rmr*a; 

 K[0][3]=K[1][2]=K[2][1]=K[3][0]=rm2r*a

; 

 K[0][2]=K[1][3]=K[3][1]=K[2][0]=-rpr*a; 

 for(i=0;i<ENODE;i++){ 

  f[i]=1/8.0 * (xm*ym-2) * z[0][i] + 

       ym/96.0 * z[1][i] + 

    xm/96.0 * z[2][i] + 

    1/1152.0 * z[3][i];}} 

int main(){ 

float x[maxN]={0,0,0,0.5,0.5,0.5,1.0,1.0,1.0} 

,xx[ENODE],          

y[maxN]={0,0.5,1,0,0.5,1,0,0.5,1},yy[ENODE],f[E

NODE], 
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u[maxN][2]={{0,0},{0,0.25}, {0,1.0}, {0,0.25}, 

{1,0}, {0,0.5}, 

{0,1},{0,0.5},{0,0}},K[ENODE][ENODE],  

Ks[maxN][maxN],Fs[maxN],PFs[maxN],Un[maxN

]; 

int elem[4][ENODE]= 

{{0,3,4,1},{3,6,7,4},{1,4,5,2},{4,7,8,5}}; 

int n=maxN,en=4;int i,j,k;  //clear Assemblage Ma-

trices 

 for(i=0;i<n;i++){for(j=0;j<n;j++) 

 Ks[i][j]=Fs[j]=0;for(i=0;i<en;i++) 

{      for(j=0;j<ENODE;j++) 

{      xx[j]=x[elem[i][j]]; 

                 

yy[j]=y[elem[i][j]];}   

  RectK(K,f,xx,yy); 

  print1x4(f)<<endl; 

  print4x4(K)<<endl; 

 for(j=0;j<ENODE;j++) 

{ for(k=0;k<ENODE;k++)  

 Ks[elem[i][j]][elem[i][k]]+=K[j][k];

   Fs[elem[i][j]]+=f[j];}  } 

cout<<"Assembled equations (Before Boundary 

Condition)" << endl; 

OutText(Ks,Fs,n); for(i=0;i<n;i++){ 

  if(u[i][0]==0){for(j=0;j<n;j++) 

   Ks[i][j]=0; 

   Ks[i][i]=1; 

   Fs[i]=u[i][1];} 

  

   PFs[i]=Fs[i];} 

 cout<<"Assembled equations "<<endl; 

 OutText(Ks,Fs,n); 

 MIV(Ks,n); 

 MVM(Ks,Fs,n,n,Un); 

 for(i=0;i<n;i++){cout<<Un[i]<< " ";} 

 Un[4]-=Fs[4]; 

 cout<< endl; 

 cout<< "(.25,.25,.5,.5,.25,.75,.75,.75)" << 

endl; 

cout<<setw(9)<<(Inter4(0,0,Un[0],Un[3],Un[4],Un[

1])) 

<<setw(9)<<Un[4]<<setw(9)<<(Inter4(0,0,Un[1],

Un[4],Un[5],Un[2]))<<setw(9)<<(Inter4(0,0,Un[4],

Un[7],Un[8],Un[5]))<<endl;   

 return 1;}} 

ostream &print1x4(float x[ENODE]){int i; 

 cout<<setprecision(3); 

for(i=0;i<ENODE;i++)cout<<setw(8)<<x[i]<<" "; 

 return cout;} 

ostream &print4x1(float x[ENODE]){int i; 

cout<<setprecision(3);for(i=0;i<ENODE;i++) 

 cout<<setw(8)<<x[i]<<endl; 

 return cout;} 

ostream &print4x4(float x[ENODE][ENODE]){ 

int i;for(i=0;i<ENODE;i++)print1x4(x[i])<<endl; 

 return cout;} 

void OutText(float M[maxN][maxN], float 

V[maxN], int r) 

{    int i,j; 

 cout<<setiosflags(ios::fixed); 

 cout<<setprecision(4); 

 cout<<endl; 

 for(i=0;i<r;i++){for(j=0;j<r;j++)  

cout<<setw(8)<<M[i][j]<<" "; 

cout<<" | "<<setw(8) << V[i] << " <== f" 

<<i<<endl;}} 

float Inter4(float s, float t, float f1, float f2, float f3, 

float f4) 

{ float f; 

f=(1-s)*(1-t)*f1+ (1+s)*(1-t)*f2+(1+s)*(1+t)*f3+ 

   (1-s)*(1+t)*f4;return f/4;} 

void MVM(float M[maxN][maxN], float V[maxN], 

int K,          int L ,float Y[maxN]) 

{ 

 float X; int i,j; 

 for(i=0;i<K;i++){X=0.0; 

  for(j=0;j<L;j++) 

   X +=M[i][j] * V[j]; 

  Y[i]=X;}} 
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void MIV(float M[maxN][maxN], int n) 

{ 

#define FORJN for(j=0;j<n;j++) 

#define FORKN for(k=0;k<n;k++) 

#define FORIN for(i=0;i<n;i++) 

#define M(i,j) M[(i)][(j)]int i,j,k; float KII; 

FORKN{KII=M(k,k);M(k,k)=1; 

FORJN 

 M(k,j)/=KII; 

 FORIN{if(i!=k){KII=M(i,k);M(i,k)=0; 

FORJN 

M(i,j)-=-M(k,j)*KII;}}}} 

 

Assembled equations (Before boundary Conditions) 

are 

 

 

Out put of the Assembled equations are 

 

5 CONCLUSION 

In the above mentioned results, rectangular ele-

ments solution and C++ program solution are the 

same for field problems. Finite element approxima-

tion for field problems improvements are made by 

refining the finite element mesh. Higher-order ele-

ment may be introduced to get a better polynomial 

approximation but integrands involved would be 

necessary to use numerical integration. Using this 

program, we can easy to know the solution of the 

other points of this problem. 

It is reasonable to expect that the proposed finite 

elements model is a very good approximation of the 

continuum. This method is now very widely used, 

and forms the basis of most calculations. 
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